
Container
Empowerment
On AWS
Harnessing the power of containers to transform

application deployment and performance on AWS

WHITEPAPER SERIES

foghornconsulting.com

A Resource Guide For Navigating The Cloud

> Introduction

> Benefits of Containers

> Anatomy of a Container

> Securing Containers

> AWS Tools for Container Success

In this whitepaper you will find out:

© Foghorn Consulting 2019

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

Harnessing the power of containers to transform

application deployment and performance on AWS.

2

Back in the “ye old days”of 2012 when containers were just taking root in the DevOps

ecosystem, most applications were monolithic. Within monolithic applications 100% of the

communications within different functions of an application were internal to the applica-

tion. As the application evolved and grew, so did its size and dependencies. With multiple

developers working on different aspects of the application, it became harder and harder

to get the code to build with zero errors. Builds began to take longer and longer. No mat-

ter the number of developers, the application’s monolithic design meant that develop-

ment velocity on a single app was limited.

With the advent of microservices, (whereby applications were subdivided into small,

loosely coupled services based on functionality), teams could stay small and release

quickly with less hassle. The drawback of microservices was that communication was now

API driven, external to the application and each microservice needed its own infrastruc-

ture. All this agile overhead lead to overprovisioning (and overpaying) for infrastructure

resources.

There was an appetite for a lighter weight, more dynamic system. How could develop-

ment teams run multiple microservices on the same machine without them bumping into

each other? With many of the apps talking and listening on the same port (https, port 443),

what could be done? Enter containers and container orchestration.

Containers include all the OS and application libraries that a microservice needs in order

to run. With an orchestration system like Kubernetes (K8s), developers can spin up light-

weight containers in the place of servers and then let K8s know how many resources

each container needs, and what port it wants to listen on. Based on POLICY, K8s can move

containers around, translate ports, assign resources, check the health of the container, kill

INTRODUCTION

1

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

2

unhealthy containers by replacing them

with new ones.

Containers are lightweight infrastructure

components that enable deployment of

applications easily by decoupling infra-

structure dependencies from the applica-

tion. Containers are a perfect infrastruc-

ture technology to enable a microservice

application architecture.

Containers themselves are not new, but

in the past several years containers have

reached critical mass. As teams and en-

gineers get more comfortable with container design and implementation this technology

will continue to gain velocity. With their immutable and ephemeral nature, containers tran-

scend physical locations running on prem and in the cloud without distinction.

Docker’s open sourced Docker Engine launched in 2013, and has helped bring containers

to critical mass. A recent Datamation Survey, titled State of the Cloud 2019 says that 31%

of enterprises are currently using container technology, while another 29% are planning on

using containers. According to Docker 100 million container images are downloaded per

day. To illustrate the demand or containers, there are over 15,000 Linked In job postings

for container expertise. It seems the only limiting factor for continued container growth in

the cloud is limited by access to experience and knowledge of containers.

Containerized applications make sense for any organization putting agile methodologies

into practice. Containers separate the application from the infrastructure, allowing it to run

anywhere. In regards to DevSecOps, containers allow for end-to-edge security at scale.

Automated security and governance are built into the application lifecycle, encouraging

speed and an aerodynamic compliance ecosystem.

1

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

31% of enterprises

are currently using

container technology,

while another 29%

are planning on using

containers.

2

Innovation is driven by a human desire to maximize utilization, resources and perfor-

mance. With the advent of DevOps and continuous integration and continuous develop-

ment (CI/CD) innovation leaps have been the new expectation. Beginning with dedicated

servers for applications, to VMs, containers are the natural evolution encouraging lean-

er, more agile applications that enable faster application testing, and scale and receive

patches more elegantly and securely.

In this whitepaper we will explore the attributes, benefits and challenges of containerized

microservices for development and deployment. We will explore container solutions as

realized by the engineering brain trust of AWS engineers, and how these technologies can

be adopted to increase performance and uptime while minimizing stress and cloud spend.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

When we analyze

the value of

containers in

relation to speed,

the definition is

threefold:

Lightweight
containers, unburdened
from the larger applica-
tion, load substantially
faster improving user

experience.

 For developers,

containers increase

innovation velocity

by enabling CI/CD

pipelines

For security
protocols disposable
containers & contain-
er orchestration make

patching faster and
config-management

easier

To appreciate the advantages of Containers, we can compare them to another software

deployment revolution that are Virtual Machines (VMs). VMs are a codified virtual computer, with

its own virtual hardware, operating system, and networking. VMs and Containers share more in

common than they differ. While they have different architectural frameworks, the goal of both

Container and VM is to isolate an application and its dependencies into a self-contained unit that

can run on any server. As well, Containers and VMs both have a private space for processing.

KEY BENEFITS OF A CONTAINER

4

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

With containerization, an engine could

be serviced mid flight. When through

QA, containers allow for the air

conditioning system to be swapped

clicked into place like Lego. From

development to deployment to user

experience, containerization of a jet

enables the “application” to work in a

more seamless, agile, secure and

nimble way that maximizes uptime.

Think of a monolithic application as

a jet. With interconnected monolithic

architecture the entire airplane must

be taken to the hanger to have anything

worked on. If there was a move to

improve the air conditioning, or make

the navigation more effective, the entire

plane would be grounded. With binaries

and libraries interconnected, the entire

airplane (application) must be taken

offline to be improved or debugged.

54

FLEXIBILITY

While VM’s have their own OS, containers exe-

cute application processes in isolation. Just as

a seafaring container on a ship can be placed

upon different ships without losing any func-

tionality, so can agile containers. The host OS

therefore does not need specific software to

run an application.

PLATFORM AGNOSTIC

Before containers applications were OS de-

pendent, making it dependant on the hosting

infrastructure. With configuration files and

dependencies built in the container can run on

any compute environment, including desktops,

physical servers, virtual servers, testing, staging,

production environments and public or private

clouds. This portability makes hybrid and mov-

ing between cloud platforms more seamless.

ISOLATION

Containers do not interact with each other. If

one microservice crashes, other containers

in the same application will not be impacted.

This feature also comes in handy in the case of

malware or nefarious hacking. The hack will be

isolated to that container and not take down the

greater application. Hacked container is auto-

matically replaced by a clean container.

LIGHTWEIGHT

Without the weight of the OS, containers can

start up in seconds compared to minutes for

most VMs. By taking up much less space, a

higher utilization can be achieved. Developers

can cram much more into a smaller area to low-

er either bare metal, data center or cloud costs.

NEED FOR SPEED

For enterprise wanting to innovate quickly and

practice continual improvements to their ap-

plications containers are ideal. Customer ex-

perience is enhanced as bugs are fixed or new

features are added on the fly without disruption

to greater ecosystem. Within seconds contain-

ers can be created, replicated or destroyed

speeding up the development process and time

to market.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

VIRTUAL MACHINES CONTAINERS

HOST OPERATING SYSTEM

GUEST OS GUEST OS

INFRASTRUCTURE

HYPERVISOR

OPERATING SYSTEM

DOCKER ENGINE

BINS/LIBS BINS/LIBS

APP APP

APP APP APP APP

BINS/LIBS BINS/LIBS

INFRASTRUCTURE

65

HORIZONTAL SCALING

With the correct design, containers can handle

increased demand by adding identical contain-

ers within a cluster to scale out. This feature

offers cost savings as just the containers need-

ed in real time will scale, leaving the rest of the

infrastructure available for other services.

DEVELOPER PRODUCTIVITY

Since containers run the same on a desktop as

they do in the cloud, developers can achieve

efficiencies when it comes to application design

and testing. Not having to address environ-

mental inconsistencies allows the developer to

focus microservice health and spend less time

debugging across environments.

 With containers, development teams have

been reorganized. Instead of owning a function-

al component of the application, they now own

a microservice from end-to-end. The delegation

of ownership and accountability contributes to

strong application design with in turn enhances

uptime. To update an application, developers

simply iterate on their application code, create

new containers, commit those containers to

their container repository, often triggering an

automated deploy. Version control allows for

rolling out and rolling back in real time. Plus

sharing containers using AWS’s Elastic Contain-

er Registry (ECR) is simple, automatically giving

their project team access to a developers work.

DO ONE THING AND DO IT WELL

Employing DevOps philosophies, the developer

teams behind each of the bounded, yet inde-

pendent microservices, own their microservice

from build, to test, to release.

For example if an ecommerce container needs

an upgrade or patch, that can be accomplished

without disruption to the other containers within

the application. With containers, one develop-

ment team cannot break the code of the entire

app. If code is broken it would be isolated to

their own microservice. And with versioning,

a container roll back can minimize any pain or

user experience disruption.

The size and complexity of a cloud environ-

ment impacts the amount of containers needed.

Netflix is AWS’s biggest customer, and has over

700 microservices allowing for responsive, se-

cure, architecture.

In the abstract containers are about deploy-

ing exactly the cloud resources you will need

to complete a specific compute objective. For

applications running in the cloud, microservices

running in containers have enabled next level

agility, flexibility and security. DevOps shops

maximizing container technology also find that

cloud infrastructure resources are used more

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

87

API Gateway

By interacting with the UI (User Interface) end

users make requests to the API gateway, which

reroutes requests to the correct microservice

within a container. Containers within an applica-

tion communicate with each other via APIs.

Owned by DevOps Team

With a product mindset (and eschewing the

project mindset) DevOps teams build better

applications. By marrying the technical product

and business capabilities, stronger software

emerges throughout the build, test and run

states.

Smart End Points/ Dumb Pipe

By moving business logic into endpoints and

using simple communication means like

HTTPS, organizations can simplify infrastructure

and jettison enterprise service bus architecture.

Decentralized Governance

Developers are in the driver's seat with their

specific containerized microservices. Whether it

is the programming language, the deployment

methodology, the UI, teams are unburdened of

legacy architecture or mindset. With pride in

ownership, DevOps team build the best service

possible.

Decentralized Data Management

With monolithic application design, the entire

application will use one central database. With

containers each microservice has their own data

persistence. Inaccessible to other microser-

vices, the private data of each microservice can

only achieve read or write capability through

a related component interface. With database

isolated at the microservice layer, the amount

of data available at a breach is factored down.

Infrastructure Automation

With a zero downtime methodology, blue/

green deployments and automation, container-

ization allows for the ability to spin up services

with the press of a button. Monitoring tools

discover issues quickly. Automated tools enable

the replacement of containers and the auto

healing of the service.

Fault Tolerance

With containers, and distributed architecture,

issues are isolated and prevented from cascad-

ing throughout the ecosystem. The fault toler-

ance for each microservice can be defined in its

manifest, ensuring that the service can survive

underlying infrastructure component failures.

This is a boon for uptime and security.

Designing for Failure

Container are cattle and not pets. Developers

have an emotional detachment from the prod-

uct and if one fails it is easily discarded and

replaced by healthier version. The fact that

containers are not interactive forces developers

to capture all application requirements in code,

like dockerfiles and K8S manifests, ensuring a

100% configuration as code environment with

virtually zero drift.

CONTAINER ANATOMY & CHARACTERISTICS

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

87

API
GATEWAY

USER
INTERFACE

MICROSERVICE
CONTAINER

MICROSERVICE
CONTAINER

MICROSERVICE
CONTAINER

MICROSERVICE
CONTAINER

MICROSERVICE
CONTAINER

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

As with any architecture security around containers attracts much scrutiny. As container technology has just

recently hit the tipping point for ubiquitous adoption, the inhouse engineering skills gap can impact security

surety, and therefore slow adoption and innovation. With AWS Security and DevOps Competency partner like

Foghorn, a wealth of container security expertise can deliver secure and compliant architecture that also

delivers upon the promise of DevOps.

While containers present some more complexity from a security surface area point of view, they can also

enhance security. By moving to smaller microservices within containerized applications compared to

monolithic applications, even more fine grained IAM is available. If a vulnerability is exploited, it is isolated

to the image and just the limited capabilities of that function. On identification, the corrupted image can be

immediately replaced with a clean image. The attacker is stymied, as the application regains full

functionality quickly.

	 BUILDING SECURE CONTAINER CHECKLIST

	 ■ Establish a container build pipeline.

	 ■ Incorporate security scanning into build pipeline.

	 ■ Offer hardened, approved, 'base images' to developers to ensure that

	 development occurs with security controls in place.

	 ■ Establish deployment pipelines to test, staging, and production environments

	 that allow DevOps teams to supply runtime requirements via manifests.

9 10

CONTAINER SECURITY

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

9 10

Compared to VM’s, distributed containers

(and the microservice within), can make network

security more complex. With increased API calls

from random ports across many servers,

traditional layer 3 security devices and

techniques are often inadequate for the job.

Application service mesh technologies like

AWS app mesh and Istio for Kubernetes can

efficiently manage transparent authorization

and encryption, and agent based intrusion

detection systems can bring monitoring

and alerting to ephemeral networks.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

1211

AWS NATIVE TOOLS FOR CONTAINERS

As DevOps has matured, images running on containers have also matured, ensuring se-

curity and compliance. With the depth and breadth of options available within the AWS

ecosystems to build, ship and run containers let’s dive deeper into the exciting tools

available on AWS.

BUILD SHIP RUN

CONTAINER

CONTAINER

CONTAINER

AMAZON ECS
AMAZON ECRCI/CD

LDAP/AD SAML SSO AWS KMS COLLABORATION SIEM ANALYTICS

Image scanning RBAC Secrets Image Assurance Runtime Protection Container Firewall Compliance

AMAZON EKS

AMAZON LAMBDA

CONTAINER

CONTAINER

CONTAINER

AMAZON ECS

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

1211

Amazon Elastic Container Registry (ECR) is a Docker container registry designed to

store, encrypt, and manage container images enabling quick start up time and global

availability. IAM resource based policies ensure compliance. Images are transferred

via SSL, and are encrypted at rest. ECR is backed by S3 with tight integration into ECS.

Amazon Elastic Container Service (ECS) is the AWS native container orchestration

solution to run containerized applications or build microservices. There is no need to

install and operate your own container orchestration software.

Amazon Elastic Container Service for Kubernetes (EKS) taps into the power of open

sourced container orchestration tool Kubernetes. EKS integrates your Kubernetes con-

trol panel into the AWS ecosystem, enabling scalable containerized applications with

speed, agility and security at their core.

Amazon Fargate scales and manages the servers required to run your containers.

Scale your clusters, or optimize cluster packing with automated infrastructure provi-

sioning enabling developers to focus even more keenly on microservice design and

security. For containers AWS Fargate is a strong solution, while serverless solution

Amazon Lambda excels for serverless execution for simple functions and the com-

pute layer.

Amazon CodeDeploy is an excellent tool to launch a new version of your container-

ized application. With this blue/ green deployments, a new version can be put into a

production test alongside the older version. Once the tests come back positive traffic

can be rerouted to new version. If there is an issue your can quickly rollback to previ-

ous version.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

12 13

AWS has built best in breed solutions to maximize the value of a container investment for

your enterprise. From compute to storage to logging and monitoring finding the right mix is

essential for ongoing success on AWS.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

14

CONCLUSION

It may seem daunting to transition from monolithic applications to containerized

applications made up of microservices. For many applications containers may not

be the best fit. For those applications that do work well with containerization, un-

matched flexibility and scalability are possible. By utilizing container best practices

CISO’s and regulators realize that containers provide a secure and compliant way

to deliver scalable, distributed and high availability applications.

KEY BENEFITS:

> Containers make it easier to scale, maintain and

 evolve an application.

> Build/ test/ release cycles can be sped up.

> With clear ownership and accountability, teams can quickly

 iterate to add new features.

> Cloud infrastructure is utilized more effectively and efficiently.

Containers separate the application’s baby from the bathwater, encouraging secu-

rity and efficiency in build, test and run. DevOps teams can divide and conquer and

eventually create an ecosystem that is easier to provision, deploy and heal. The

increased agility breeds more effective infrastructure utilization, a higher velocity

of innovation, and more delighted customers.

FO G H O R N W H I T E PA P E R > C o n t a i n e r E m p ow e r m e n t O n AWS

DEVELOP A CONTAINER
STRATEGY TODAY

SCHEDULE A CALL

FOGHORN DELIVERS BUSINESS
TRANSFORMATIONS ON AWS

Whether you are new to AWS or have an existing AWS environment you are

looking to optimize, Foghorn can help. For over 10 years we have delivered

outstanding results for clients on AWS. From DevOps in the Cloud to Security

in theCloud, Foghorn has the talent, experience and credentials to deliver a

velocityof innovation designed to increase performance while optimizing costs

AWS DEVOPS COMPETENCY
When the silos are knocked down and development and operations can collaborate in a cycle of con-

tinuous improvement and continuous development in the cloud amazing things happen. Foghorn has

been at the forefront of the DevOps revolution and are proud to have earned AWS DevOps Competency.

When DevOps meets Foghorn, you have FogOps® and the promise of the cloud- Delivered.

AWS SECURITY COMPETENCY
Foghorn knows cloud security and DevSecOps in the cloud. In 2017 AWS launched a security competen-

cy to highlight their partners who satisfy and exceed AWS Cloud security best practices. The framework

for this certification covers incident response, logging and monitoring, security, access management and

data protection. Foghorn delivers DevSecOps results for customers from HIPPA/HITECH to PCI.

FO G H O R N W H I T E PA P E R > D ev S e c O p s E n a b l e m e n t o n A m a zo n W e b S e r v i c e s

https://foghornconsulting.com/contact/?utm_campaign=whitepaper-series&utm_source=whitepaper&utm_medium=or&utm_content=container-empowerment-on-aws

Foghorn Consulting was founded in 2008 with a mission to

ensure that cloud computing initiatives deliver maximum value

for its customers. Based in the Silicon Valley, Foghorn provides

domain expertise in strategy, planning, execution and managed

cloud services to high-growth and enterprise companies seeking

a cloud partner. Our team of DevOps engineers, SRE’s and

certified cloud architects bring over 20 years of domain expertise

to ensure your cloud initiatives are a success.

330 Townsend St, Suite 202

San Francisco, CA 94107

foghornconsulting.com

info@foghornconsulting.com

650-963-0980

https://www.foghornconsulting.com/?utm_campaign=foghorn-way&utm_source=whitepaper&utm_medium=or&utm_content=hipaa-compliance-whitepaper

